Strictly Nearly Kähler 6-manifolds Are Not Compatible with Symplectic Forms
نویسنده
چکیده
We show that the almost complex structure underlying a nonKähler, nearly Kähler 6-manifold (in particular, the standard almost complex structure of S) cannot be compatible with any symplectic form, even locally.
منابع مشابه
Cohomologically Kähler Manifolds with No Kähler Metrics
We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kähler and do not admit Kähler metric since their fundamental groups cannot be the fundamental group of any compact Kähler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kähler metrics was an open que...
متن کاملKähler Geometry of Toric Manifolds in Symplectic Coordinates
A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on ...
متن کاملNon-Kähler symplectic manifolds with toric symmetries
Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...
متن کاملHyperbolic geometry and non-Kähler manifolds with trivial canonical bundle
We use hyperbolic geometry to construct simply-connected symplectic or complex manifolds with trivial canonical bundle and with no compatible Kähler structure. We start with the desingularisations of the quadric cone in C: the smoothing is a natural S-bundle over H, its holomorphic geometry is determined by the hyperbolic metric; the small-resolution is a natural S-bundle over H with symplectic...
متن کاملSymplectic Cutting of Kähler Manifolds
We obtain estimates on the character of the cohomology of an S-equivariant holomorphic vector bundle over a Kähler manifold M in terms of the cohomology of the Lerman symplectic cuts and the symplectic reduction of M . In particular, we prove and extend inequalities conjectured by Wu and Zhang [12]. The proof is based on constructing a flat family of complex spaces Mt (t ∈ C) such that Mt is is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006